Fall 2013

Quiz 6

1. (10 pts) Determine the value(s) of c for which the given matrix is not invertible.

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & c \\
0 & c & -15
\end{array}\right]
$$

Ans: (Expanding along column 1) The determinant is:

$$
1\left(3(-15)-c^{2}\right)-2(2(-15)+c)=-c^{2}-2 c+15 .
$$

We require the determinant equals to 0 , i.e. $-c^{2}-2 c+15=0$, and by factoring

$$
(c+5)(3-c)=0
$$

So $c=-5,3$.
2. (10 pts) Find the standard matrix associated with the linear transformation T and use it to determine whether T is onto.
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
3 x_{2} \\
2 x_{1}-x_{2} \\
x_{1}+x_{2}
\end{array}\right]
$$

Ans: The standard matrix is

$$
A=\left[\begin{array}{cc}
0 & 3 \\
2 & -1 \\
1 & 1
\end{array}\right]
$$

T is onto iff A has rank 3. However, it is clear that $\operatorname{rank}(A) \leq 2$. Therefore, T is not onto.

